symtegration-0.6.1: Library for symbolic integration of mathematical expressions.
CopyrightCopyright 2025 Yoo Chung
LicenseApache-2.0
Maintainerdev@chungyc.org
Safe HaskellSafe-Inferred
LanguageGHC2021

Symtegration.Polynomial.Rational

Description

Provides a representation for rational functions, which are functions of ratios for two polynomials. Note that these are not functions of rational numbers.

Synopsis

Documentation

data Function a Source #

Represents a rational function.

Values can be constructed with fromPolynomial and fromPolynomials, while the numerator and denominator can be obtained by pattern matching with Function. Internally, common factors will be canceled out and the denominator will be monic.

>>> fromPolynomial $ power 1 :: Function IndexedPolynomial
Function (x) (1)
>>> fromPolynomials (power 2 + 1) (power 3 + 1) :: Function IndexedPolynomial
Function (x^2 + 1) (x^3 + 1)
>>> let (Function p q) = fromPolynomials (power 2) (power 1 + 1) :: Function IndexedPolynomial
>>> (p, q)
(x^2,x + 1)
>>> fromPolynomials (4 * power 2 - 4) (2 * power 1 - 2 :: IndexedPolynomial)
Function (2x + 2) (1)

The type is an instance of the Fractional type class, so values can be added, subtracted, multiplied, and divided. Their values can also be given as integer literals as well.

>>> let p = fromPolynomials (power 2 + 1) (power 3 + 1) :: Function IndexedPolynomial
>>> let q = fromPolynomials (power 1) (power 2 - 1) :: Function IndexedPolynomial
>>> p + q
Function (2x^3 + (-2)x^2 + 2x + (-1)) (x^4 + (-1)x^3 + x + (-1))
>>> p * q
Function (x^3 + x) (x^5 + (-1)x^3 + x^2 + (-1))
>>> 0 :: Function IndexedPolynomial
Function (0) (1)
>>> 5 :: Function IndexedPolynomial
Function (5) (1)

One could import this module with an alias so that Rational.Function can be used as the name of the type for rational functions.

>>> import Symtegration.Polynomial.Rational as Rational
>>> fromPolynomials (power 1) (power 2 + 1) :: Rational.Function IndexedPolynomial
Function (x) (x^2 + 1)

Instances

Instances details
Generic (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Associated Types

type Rep (Function a) :: Type -> Type #

Methods

from :: Function a -> Rep (Function a) x #

to :: Rep (Function a) x -> Function a #

(Polynomial p e c, Eq (p e c), Num (p e c), Fractional c) => Num (Function (p e c)) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Methods

(+) :: Function (p e c) -> Function (p e c) -> Function (p e c) #

(-) :: Function (p e c) -> Function (p e c) -> Function (p e c) #

(*) :: Function (p e c) -> Function (p e c) -> Function (p e c) #

negate :: Function (p e c) -> Function (p e c) #

abs :: Function (p e c) -> Function (p e c) #

signum :: Function (p e c) -> Function (p e c) #

fromInteger :: Integer -> Function (p e c) #

(Polynomial p e c, Eq (p e c), Num (p e c), Fractional c) => Fractional (Function (p e c)) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Methods

(/) :: Function (p e c) -> Function (p e c) -> Function (p e c) #

recip :: Function (p e c) -> Function (p e c) #

fromRational :: Rational -> Function (p e c) #

(Show a, TextShow a) => Show (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Methods

showsPrec :: Int -> Function a -> ShowS #

show :: Function a -> String #

showList :: [Function a] -> ShowS #

NFData a => NFData (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Methods

rnf :: Function a -> () #

(Eq a, Num a) => Eq (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

Methods

(==) :: Function a -> Function a -> Bool #

(/=) :: Function a -> Function a -> Bool #

TextShow a => TextShow (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

type Rep (Function a) Source # 
Instance details

Defined in Symtegration.Polynomial.Rational

type Rep (Function a) = D1 ('MetaData "Function" "Symtegration.Polynomial.Rational" "symtegration-0.6.1-DUbo7gA2mHxLMl4wQj7m9L" 'False) (C1 ('MetaCons "F" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

fromPolynomial :: (Polynomial p e c, Num (p e c)) => p e c -> Function (p e c) Source #

Returns an equivalent rational function from a given polynomial.

>>> fromPolynomial (power 2 + 1 :: IndexedPolynomial)
Function (x^2 + 1) (1)

fromPolynomials Source #

Arguments

:: (Polynomial p e c, Eq (p e c), Num (p e c), Fractional c) 
=> p e c

Numerator \(a\).

-> p e c

Denominator \(d\).

-> Function (p e c)

Rational function \(\frac{a}{d}\).

Returns a rational function with the ratio of two polynomials.

>>> fromPolynomials (power 1) (power 2 + 1 :: IndexedPolynomial)
Function (x) (x^2 + 1)

toPolynomial :: (Polynomial p e c, Eq (p e c), Num (p e c), Fractional c) => Function (p e c) -> Maybe (p e c) Source #

Returns an equivalent polynomial from a rational function if possible.

It returns the numerator if the denominator is a constant.

>>> toPolynomial $ fromPolynomials (2 * power 1 + 2) (2 :: IndexedPolynomial)
Just x + 1

It returns nothing if the rational function is not equivalent to a polynomial.

>>> toPolynomial $ fromPolynomials 1 (power 1 :: IndexedPolynomial)
Nothing

pattern Function :: a -> a -> Function a Source #

Pattern synonym for matching the numerator and denominator of a rational function. This would be equivalent to a data constructor, except it cannot be used for constructing a rational function.

>>> let (Function p q) = fromPolynomials (power 2) (power 1 + 1) :: Function IndexedPolynomial
>>> p
x^2
>>> q
x + 1